Control of Drosophila perineurial glial growth by interacting neurotransmitter-mediated signaling pathways.
نویسندگان
چکیده
Drosophila peripheral nerves, similar structurally to the peripheral nerves of mammals, comprise a layer of axons and inner glia, surrounded by an outer perineurial glial layer. Although it is well established that intercellular communication occurs among cells within peripheral nerves, the signaling pathways used and the effects of this signaling on nerve structure and function remain incompletely understood. Here we demonstrate with genetic methods that the Drosophila peripheral nerve is a favorable system for the study of intercellular signaling. We show that growth of the perineurial glia is controlled by interactions among five genes: ine, which encodes a putative neurotransmitter transporter; eag, which encodes a potassium channel; push, which encodes a large, Zn(2+)-finger-containing protein; amn, which encodes a putative neuropeptide related to the pituitary adenylate cyclase activator peptide; and NF1, the Drosophila ortholog of the human gene responsible for type 1 neurofibromatosis. In other Drosophila systems, push and NF1 are required for signaling pathways mediated by Amn or the pituitary adenylate cyclase activator peptide. Our results support a model in which the Amn neuropeptide, acting through Push and NF1, inhibits perineurial glial growth, whereas the substrate neurotransmitter of Ine promotes perineurial glial growth. Defective intercellular signaling within peripheral nerves might underlie the formation of neurofibromas, the hallmark of neurofibromatosis.
منابع مشابه
Signaling Pathways Controlling the Growth and Proliferation of Drosophila Perineurial Glial Cells
متن کامل
Phosphatidylinositol 3-kinase and Akt nonautonomously promote perineurial glial growth in Drosophila peripheral nerves.
Drosophila peripheral nerves, structured similarly to their mammalian counterparts, comprise a layer of motor and sensory axons wrapped by an inner peripheral glia (analogous to the mammalian Schwann cell) and an outer perineurial glia (analogous to the mammalian perineurium). Growth and proliferation within mammalian peripheral nerves are increased by Ras pathway activation: loss-of-function m...
متن کاملPerineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance
Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity. The perineurial glia form the continuous outer cellular layer of the blood-brain barrier and are the interfac...
متن کاملSpinster controls Dpp signaling during glial migration in the Drosophila eye.
The development of multicellular organisms requires the well balanced and coordinated migration of many cell types. This is of particular importance within the developing nervous system, where glial cells often move long distances to reach their targets. The majority of glial cells in the peripheral nervous system of the Drosophila embryo is derived from the CNS and migrates along motor axons t...
متن کاملPredetermined embryonic glial cells form the distinct glial sheaths of the Drosophila peripheral nervous system
One of the numerous functions of glial cells in Drosophila is the ensheathment of neurons to isolate them from the potassium-rich haemolymph, thereby establishing the blood-brain barrier. Peripheral nerves of flies are surrounded by three distinct glial cell types. Although all embryonic peripheral glia (ePG) have been identified on a single-cell level, their contribution to the three glial she...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 18 شماره
صفحات -
تاریخ انتشار 2001